

UNITED KINGDOM · CHINA · MALAYSIA

WIMP/axion astronomy in dark matter experiments

Ciaran O'Hare

University of Nottingham, UK

The problem:

Predicting direct detection signals requires knowledge of the *unknown* dark matter velocity distribution

The solution:

Pre-detection

- Make an assumption
- Account for our ignorance
- Figure out what it might be (simulations)

Post-detection:

Measure it (this talk)

Outline

Astrophysical uncertainties in dark matter detection

› C. A. J. O'Hare [1604.03858]

Measuring the dark matter velocity distribution

- C. A. J. O'Hare & A. M. Green [1410.2749]
- B. J. Kavanagh & C. A. J. O'Hare [1609.08630]

C. A. J. O'Hare & A. M. Green [1701.03118]

The Milky Way velocity distribution

- Usually assume Maxwellian f(v)
- Simulations persistently exhibit non-Maxwellian features and can include substructure components,
 - e.g. → streams Purcell et al. [1203.6617]
 - → dark disk Schaller et al. [1605.02770]
 - → debris flows Kuhlen et al. [1202.0007]
 - → axion miniclusters Kolb & Tkachev [hep-ph/9303313]

Effect of astrophysical uncertainties

Uncertainty in exclusion limits →

e.g. McCabe [1005.0579]

"What have I ruled out?"

← Biased parameter estimation e.g. Peter [1103.5145]

"What have I measured?"

The neutrino floor

The neutrino floor

Astrophysical uncertainties cause problems for direct detection

Solution: go and measure the local Milky Way halo directly

Bonus: find out about the formation history of the Milky Way...

Directional detection

- Probing the velocity distribution is hard with recoil energy information alone Lee & Peter [1202.5035]
- But recoil energies and directions...

Directional detectors

180°

Experimentally challenging, but can discover DM with O(30) recoil directions

How to measure directionality:

- Low pressure gas TPC e.g. DRIFT, DMTPC, MIMAC, NEWAGE
- Nuclear emulsions [1604.04199]
- LXe/LAr Columnar recomb. [1704.03741]
- ZnWO₄ scintillators [Cappella et al 17]

Detecting streams

• Tidal streams produce striking directional recoil patterns:

- Detection requires O(1000) events in conventional detector
 - \rightarrow O(100) events in directional detector O'Hare & Green [1410.2749]

More stuff with directional detectors...

The neutrino floor

→ Directional information can be used to subtract the otherwise irreducible neutrino background

O'Hare et al [1505.08061]

Discretised velocity distribution:

→ How to measure the velocity distribution with **no** prior assumptions

Kavanagh & O'Hare [1609.08630]

Axions

Axion/ALPs

• Search for pseudoscalar a(x), with a coupling to EM:

$$\mathcal{L} = -\frac{1}{4} g_{a\gamma\gamma} a(x) F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Constraints from:

- Experiments
- Astrophysics
- Cosmology

Axion Haloscope

Resonant cavity experiment

→ To detect axion: resonance = axion mass

Once axion is detected:

- Measure power spectrum
- Measure annual modulation
- Probe substructure
 - → axion astronomy

O'Hare & Green [1701.03118]

 $|\mathbf{v}_{\mathrm{lab}}| \; [\mathrm{km} \; \mathrm{s}^{-1}]$

Lab velocity:

→ Extract astrophysical parameters

Measuring Solar velocity: $v_0 + v_{\odot}$

C. A. J. O'Hare & A. M. Green [1701.03118]

Example power spectra from an N-body simulation

• Particles inside 1 kpc sized bubbles at r = 8 kpc Galactic radius

Axion miniclusters

- Collapsing perturbations in early Universe can form small clumps of axions
- Tidally disrupted by interactions with stars
 - → network of minicluster streams wrapping Milky Way Tinyakov [1512.02884]
 - \rightarrow stream crossing time O(1-100) days

May need to be distinguished from environmental noise peaks with use of time/daily modulation

C. A. J. O'Hare & A. M. Green [1701.03118]

Take home:

Must understand local MW halo to do dark matter detection

Dark matter detection can help us understand the local MW halo

If a WIMP or axion has been detected...

Sort of, but you probably need a big detector and ideally a directional one

Can you do axion astronomy?

Yes! A haloscope could measure the local halo more accurately than an astronomer

Bonus

Directional detectors

Best at the moment: low pressure gas TPCs

Detecting streams

- Could detect Sagittarius stream with 20 kg-year directional detector
 - Non-parametrically (test for median direction/rotational symmetry)
 - Parametrically (model stream → likelihood fit)

O'Hare & Green [1410.2749]

Empirical velocity distribution

B. J. Kavanagh & C. A. J. O'Hare [1609.08630]

 Can we extract the velocity distribution from directional experiments in a model independent way?

$$f(\mathbf{v}) = f(v, \cos \theta, \phi) = \begin{cases} f^1(v) & \text{for } \theta \in [0^\circ, 60^\circ] \\ f^2(v) & \text{for } \theta \in [60^\circ, 120^\circ] \\ f^3(v) & \text{for } \theta \in [120^\circ, 180^\circ] \end{cases}$$
 Empirical polynomial fit in each bin

Reconstructing the velocity distribution

 For a given benchmark model generate mock data for two future directional detectors

Target	Threshold	Exposure
Xe	5 keV	1 ton-year
F	20 keV	10 kg-year
		Xe 5 keV

Compare three methods of reconstruction

Method A: Best case

We know the underlying velocity distribution and its parameters

Fit: mass, cross-section

Method B: Reasonable case

We know the form of the velocity distribution but not the parameters

Fit: mass, cross section + astrophysical params.

Method C: Worst case

We know nothing at all about the velocity distribution

Fit: mass, cross section + empirical parameters

Benchmarks Velocity distributions Speed distributions models: SHM: f(v) $v_0^{}=220~\mathrm{km/s}$ $v_{
m esc} = 533~{
m km/s}$ $\frac{300}{\text{Speed}} \frac{400}{\text{km s}^{-1}}$ $v \text{ [km s}^{-1] 0}$ 120° **SHM+Stream:** f(v)Purcell [1203.6617] $v \, [\mathrm{km \, s}^{-1}] \, 0$ Speed $[\text{km s}^{-1}]$ 120° **SHM**+Debris flow: f(v)Kuhlen [1202.0007] $v \, [\mathrm{km \ s^{-1}}]$ Speed $[\text{km s}^{-1}]$

Comparing reconstructions

• Ideally we extract something physical to hint towards substructure

Average parallel to Earth's motion:
$$\langle v_y \rangle = \int \mathrm{d}v \, \int_0^{2\pi} \mathrm{d}\phi \, \int_{-1}^1 \mathrm{d}\cos\theta \, (v\cos\theta) \, v^2 f(\mathbf{v})$$

Average transverse to Earth's motion: $\langle v_T^2 \rangle = \int \mathrm{d}v \, \int_0^{2\pi} \mathrm{d}\phi \, \int_{-1}^1 \mathrm{d}\cos\theta \, (v^2\sin^2\theta) \, v^2 f(\mathbf{v})$

Comparing reconstructions

• Ideally we extract something physical to hint towards substructure

Average parallel to Earth's motion:
$$\langle v_y \rangle = \int \mathrm{d}v \, \int_0^{2\pi} \mathrm{d}\phi \, \int_{-1}^1 \mathrm{d}\cos\theta \, (v\cos\theta) \, v^2 f(\mathbf{v})$$

Average transverse to Earth's motion: $\langle v_T^2 \rangle = \int \mathrm{d}v \, \int_0^{2\pi} \mathrm{d}\phi \, \int_{-1}^1 \mathrm{d}\cos\theta \, (v^2\sin^2\theta) \, v^2 f(\mathbf{v})$

Measuring tidal streams

- Can extract all five properties of a stream from sinusoid
 - Stream density

Power relative to bulk

Stream dispersion Width of sinusoid

Galactic velocity Amplitude, phase and mean of sinusoid

Axion miniclusters

 Collapsing density perturbations in the early Universe can form small clusters of axions

Density contrast:
$$\Phi = \frac{\delta \rho}{\rho} \sim 1$$

Mass: $M \sim 10^{-12} \, M_{\odot}$

Radius: $R \sim 10^7 \, \mathrm{km}$

Density: $\rho \sim 10^6 \, \mathrm{GeV \, cm^{-3}}$

- Could comprise non-negligible fraction of DM halo
- Up to 10¹⁰ pc⁻³ in the local stellar neighbourhood?

Tinyakov [1512.02884]