
Axion haloscopes & the local dark 
matter distribution
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DM axions: a classical field a(x, t) ⇡
p
2⇢a
ma

cos (!t� p · x+ ↵)

! = ma

✓
1 +

v2

2

◆

p = mav

Oscillations in time:

Oscillations in space:
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Accounting for distribution of modes

3

velocity distribution f(v), width: !v ~156 km/s

a(x, t) =

p
2⇢a
ma

Z
d

3
p

(2⇡)3
|A(p)| cos (!t� p · x+ ↵p)
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ma�2
v
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ma
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~Time scale for 
oscillation to dephase

~Length scale for 
oscillation to dephase



Ciaran O’Hare 4

dark matter
 axions

axions converting
 into photons

! = ma
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1 +

v2
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◆

+

a(x, t) ⇡
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2⇢a
ma

cos (!t� p · x+ ↵)
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Power spectrum of EM time-series over many 
coherence times → f(v)
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Haloscopes vs. axion Compton wavelength

Magnetic fields
→ ABRACADBRA

Cavity modes
→ ADMX, CAPP,
HAYSTAC, KLASH
ORGAN

Electric fields
→ MADMAX, BRASS

ABRACADABRA:
Detecting axion dark matter

0902.1089

Fermi (NASA)

1406.0507

Ben Safdi
MIT / University of Michigan

Y. Kahn, B.S., J. Thaler, PRL 2016

ABRA-10 cm collaboration

2017

Figure 22: The concept of the MADMAX experiment [566], see text for details. From [566].

of oscillating B-fields can be excited. First, if the axion DM wave is not completely at rest induces a
small intrinsic Ba-field [391], which can be calculated by applying Faraday’s equation to the ALP-like
wave (4.24),

Ba =
1

i!
r⇥ Ea = �ga�v ⇥Bea (7.18)

where v = k/! is the axion DM velocity. As explained in sec. 4.1, the velocity of the ALP field takes
a coherence time (4.10) to change and sweeps values according to a velocity distribution like (4.2) but
the Sun orbital motion around the Galaxy ensures that on average a non-zero velocity is singled out on
average, vodot ⇠ 220 km/s ⇠ 0.710�3. This Ba field is therefore smaller than Ea by factor ⇠ �v ⇠ 10�3

in the DM field. On the other hand, the axion-induced Ea-field can produce a current in a conductor or
similar that induces a new B-field. For instance, in the dish antenna concept, EM waves are radiated
o↵ the disk and they feature B-fields of size |B| = |Ea|. Regardless of its origin, the small oscillating
magnetic field could be measured by a carefully placed pick-up coil and associated amplifying LC
circuit. The amplified signal can then be detected by a sensitive magnetometer like a SQUID. The first
proposal by Sikivie [567] considered measuring the small intrinsic B-field, while further ideas where
presented to measured the secondary B created by Ea [146, 568]. The signal strength depends on the
magnetic flux going through the pick-up coil, which, for relevant configurations, and provided the axion
wavelength is much larger than the dimensions of the magnet, it is proportional to BeVBe , where VBe is
the total volume of the magnet. This method could achieve competitive sensitivity for very low masses
ma . 10�6 eV, if implemented in magnet volumes of few m3 volumes and few T fields.

Particularly appealing is the implementation of this concept in a toroidal magnet geometry providing
a toroidal23 oscillating Ea because the pickup coil can then be placed in the center of the toroid, where
the static background magnetic field is practically zero [568]. As proposed in [568], the concept allows
for a non-resonance (i.e. broadband) mode of operation, in which the coil is inductively coupled to the
SQUID without tunable capacitor, see Fig. 23. This mode of operation has the advantage of probing
large ranges in ma at once (something particularly useful also in the search for hidden photons [146]),
and is more e�cient that the narrowband mode for lower axion masses. When in narrowband mode,

23In earnest, the solution Ea = �ga�Bea has been obtained for an homogeneous background Be field and not valid for
a toroidal field. It should be however a good approximation in the limit where the radius is much larger than `a.

77

Toroidal magnet 
→ axion acts as effective 
current, induces B-field in 
centre of toroidal magnet 
where there should be 0 
field

Tunable resonant cavity
→ Detect enhanced EM-
response when resonant 
mode is tuned precisely 
to axion mass  

Dielectric disks
→ Radiation generated at 
magnetised dielectric 
interfaces, arrange layers of 
dielectrics to constructively 
interfere radiation

ma ~ µeVma < 0.1 µeV ma > 100 µeV
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Haloscopes
Haloscopes try to measure some EM power 

from the axion signal, over some noise 
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Haloscopes

Except, we have this pesky degeneracy faced by 
almost all direct searches for DM

Degeneracy between local density of DM 
particle (astrophysics) & DM-SM coupling 

(particle physics)

Ps / ⇢ · g2a� . . .
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For the QCD axion this degeneracy is important 
because we have benchmarks we wish to reach

KSVZ:
DFSZ:

Ca� = �1.92
Ca� = 0.75

ga� ⌘ ↵

2⇡

Ca�

fa
= 2.0⇥ 10�16Ca�

ma

µeV
GeV�1

Ps / ⇢ · g2a� . . .
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But we can infer the local density with astronomy

Local measure 
(kinematics of nearby stars) 

Global measure 
(build mass model for MW) 

Ps / ⇢ · g2a� . . .



Local measures
 e.g. Sivertsson+ [1708.07836]

Global measures 
e.g. Eilers+ [1810.09466]

0.3 ± 0.03 GeV/cm30.46 ± ~0.1 GeV/cm3

•Global measure has tiny statistical errors, but inferred over large scales
•Local measures give us the more relevant density estimate but are still 

systematics dominated
         → Gaia’s potential still not yet fully tapped
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Read [1404.1938]

post-Gaia 
Hagen+[1802.09291]
Buch+ [1808.05603]

Widmark [1811.07911]
de Salas+ [1906.06133]

Eilers+ [1810.09466]
Benito+ [1901.02460]

Global
Local
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History of “determinations” of the local DM density by 
haloscope experimental publications

ADMX
0.63 GeV/cm3

RBF 
0.3 GeV/cm3

2018

2009

1987

ADMX 
0.45 GeV/cm3
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Ps / ⇢a ⇥ g2a�

But for axions this density could also be 
more complicated than it seems

⇢a / f
axions

· ⇢
dm

(x�)

⇢a / f
axions

· (1� f
clump

) · ⇢
dm

(x�)
Fraction of axions

not in clumps
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is expected for post-inflationary axions

Buschmann, Foster, Safdi [1906.00967]

→ bound clumps of axions with 
asteroid masses ~ 10-12 Mo Eggemeier+ [1911.09417]

Gorghetto, Hardy, Villadoro [1806.04677]

fclump 6= 0

MOVIE

MOVIE
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Galaxies made of axion miniclusters+diffuse axions

Eggemeier+ [1911.09417] fclump(z = 100) = 0.75

Tidal disruption?
Merging

GrowthB
ou

nd
 

Fr
ac

tio
n

N
um

be
r 

z 

  diffuse axions
+miniclusters
+ministreams ~ 1%?
Tinyakov+ [1512.02884]
Dokuchaev+ [1710.09586]
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dPs
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a
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What do we expect f(v) to look like?
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Gaia

• 1.7 billion stars (1% of MW)
• 1.3 billion in 5D (α,δ,ϖ,µα*,µδ)
• 7 million in 6D (x,y,z,vx,vy,vz)



Structure of the Milky Way

universetoday.com



Extracting the stellar halo with Gaia

Myeong+ 
[1712.04071]

Thin/thick Disk

“Metal poor”
halo

“Metal rich” 
halo

“Hot thick disk”

Ciaran O’Hare
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Distinct chemodynamical signature implies that the 
highly radial stars were brought in by a 4:1 merger with 
a 109-10 Mo stellar mass galaxy, 8-10 billion years ago

Helmi et al. 1806.06038

 Further evidence: 
Stellar density break at 20 kpc 
from pileup of stars at apocentre 
Deason+[1805.10288]
 Dynamical heating of thick 
disk stars into halo-like orbits 
Belokurov+ [1909.04679] 

 → Highly radial orbits suggest low inclination head-on collision

MOVIE



The great debate: which of the equally terrible names 
should we use for this discovery?

Gaia-Enceladus?

Gaia radially anisotropic substructure?

Gaia-Enceladus/Sausage!?

Gaia-Sausage?



Gaia-Sausage Gaia-Enceladus+

=

Gaia Enchilada
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More on the sausage…

Koppelman+ [1804.11347]
(Main sequence)

Lancaster +[1807.04290] 
(Blue horizontal branch)

Iorio & Belokurov 
[1804.11347](RR Lyraes)

Myoeng+[1805.00453]
(Globular clusters)



Q: What % of the local dark halo is made of sausage?

•Well represented in stellar halo*: e.g. ~50% of all MS stars 
within 10 kpc in Gaia-SDSS halo sample + and in other pops

•Necib+ [1810.12301]: ~40±25% of local DM accreted from 
luminous mergers is in Sausage-like form (FIRE)

•Fattahi+ [1810.07779]: <10% of local DM within 20 kpc 
brought in by Sausage-like events (Auriga)

•Evans+ [1810.11468]: sphericity of equipotentials means that 
fraction of halo mass in a triaxial figure should be <20%

>0% ?

However:

*[see ’17-’20 papers by Helmi+, Myeong+, Koppelman+, Belokurov+, Matsuno+… and many others]
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What kind of sausage is the Gaiawurst?

High iron abundance suggests 
Blutwurst is a good candidate?

But too anisotropic 
→ more (g)astronomy research 

needed
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Is this important for our axion signal model?

-1 0 1 2 3 4 5

0

0.1

0.2

0.3
Isotropic halo
Halo+Sausage

Sausage (20%)
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Anisotropy of velocity ellipsoid

�r > �z,�

•Influence of the Sausage means that the halo will be 
hotter in the galactic radial direction

r
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Gaia Sausage + post-inflationary axion: 
→ more miniclusters on highly radial orbits 
→ more disruption?

Sausage stars pass much closer to galactic centre than 
average stars in the rest of the halo… 
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MOVIE



More substructure
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Generic result of hierarchical structure formation:  
Streams of stars/DM from tidally stripped dwarfs, subhalos …

Mateu+ [1711.03967]
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• Far away streams can be 
seen projected on the sky:

• Nearby streams 
(including ones we 
are inside of) must 
be searched for in 
phase space:
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← Retrograde orbits Prograde orbits → 

Overdense retrograde 
tail containing 
several streams 

“Sequoia”

Helmi 
streams/S2 

stream

Azimuthal orbital action

Orbital 
energy

Local halo stars 
(sausage removed)
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Local action-space substructures with orbits 
intersecting Solar position

Two high 
significance 
streams
“S1” and “S2”

O’Hare+[1909.04684]
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Distribution of known local substructure on 
the Sky in Earth rest frame
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Top-down Side-on
S2 stream is on a prograde, polar orbit

Contributes to the peak of f(v)  
→ more important for axion searches 

GC GC
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If streams makeup a small chunk of the local DM density 
then they will show up and be measurable in axion signal

Important NB:
Dark matter density in 
substructure can still 
not be inferred with 
any great confidence 
from stars alone, 
further bespoke sims 
still required



Further questions
• Need refined estimates of local density fully exploiting 
Gaia data (ongoing)
→ +agreement in community on benchmark, we may miss DFSZ if local density 
overestimated.

• Are direct searches for post-inflationary axions 
doomed to fail?
→ How many miniclusters have survived locally?
→ Does the major head-on merger with the sausage galaxy change this prediction?
→ can indirect searches help?

•How are the kinematics of stars in the halo related to 
the kinematics of dark matter?


