IAXO as a solar

magnetometer

Ciaran O'Hare, U. Sydney

[2005.00078], [2006.10415]

 \mathcal{Q}

with Andrea Caputo Edoardo Vitagliano Alexander Millar • Can we measure the Sun's magnetic field using solar axions?

The Sun's magnetic field: why do we care?

Improving our understanding of the Sun has farreaching consequences for astronomy

- The Sun is our prototypical cool main sequence star
- Our understanding of all similar stars is normalised on our Sun
- Understanding solar B-field \rightarrow solar wind, solar cycle, prominences etc.
- Has the sun trapped an ancient interstellar fossil field?
- Measuring solar B-field is hard

Usual axion fluxes

No B-field dependence

Primakoff (Axion-photon)

*I**

Oscillations in ionised medium (e.g. the Sun)

Transverse plasmons ~ free massive particles with mass ω_p

$$\omega^2 - k^2 = \omega_p^2$$

Longitudinal plasmons Oscillations at ~plasma frequency

$$\omega^2 = \omega_p^2$$

Non-rel. plasmons in medium at temperature T: longitudinal & transverse

Transverse modes ~ behave like free massive particles

$$\omega^2 = k^2 + \omega_{\rm P}^2 \left(1 + \frac{k^2}{\omega^2} \frac{T}{m_e} \right)$$

Longitudinal mode oscillate ~const freq.

$$\omega^2 = \omega_{\rm P}^2 \left(1 + 3 \frac{k^2}{\omega^2} \frac{T}{m_e} \right)$$

Axion-photon oscillations

Coupling axion to longitudinal plasmon

Longitudinal mode oscillate ~const freq.

$$\omega^2 = \omega_{\rm P}^2 \left(1 + 3 \frac{k^2}{\omega^2} \frac{T}{m_e} \right)$$

Longitudinal plasmon always crosses free axion dispersion relation at some momentum ★ → resonant conversion

The new flux

See 1996 paper by Mikheev *et al.* [hep-ph/9803486] revisited in [2005.00078]

Axion emission rate from LPlasmons

$$\Gamma_{\text{LP}\to a}(\omega) = \frac{g_{a\gamma}^2 B_{\parallel}^2}{e^{\omega/T} - 1} \frac{\omega^2 \Gamma_L}{\left(\omega^2 - \omega_p^2\right)^2 + \left(\omega \Gamma_L\right)^2}$$
$$\simeq \frac{g_{a\gamma}^2 B_{\parallel}^2}{e^{\omega/T} - 1} \frac{\pi}{2} \delta\left(\omega - \omega_p\right)$$

- \rightarrow resonance at plasma frequency
- → Proportional to the **transverse** magnetic field squared

Integrate over phase space and Sun → Axion luminosity

$$L_{\rm LP\to a} = \int_{\odot} d^3 \mathbf{r} \int \frac{d^3 \mathbf{k}}{(2\pi)^3} \omega \frac{g_{a\gamma}^2 B_{\parallel}^2}{\left(e^{\omega/T} - 1\right)} \frac{\pi}{2} \delta\left(\omega - \omega_p\right)$$

Benchmark model of solar B-field: "Saclay seismic model"

Couvidat et al. (2002) astro-ph/0203107

Interior Solar B-field still highly uncertain → Saclay model is just a solid benchmark that satisfies observational bounds

Convective Radiative

Solar B-field profile: "Saclay seismic model"

Typical energies

• Plasma frequency ~ 300 eV at r=0, then decreasing outwards \rightarrow Highest energy axions from core

→ need sub-keV energy resolutions for detection

The new flux

• Resonance at plasma frequency means that an axion's energy can be mapped to the radius it came from!

Download .txt file with the new flux: cajohare/solax/master/data/solar/LPlasmonFlux_SeismicB.txt

A brief aside...

Side note: two sources of annual modulation

1.

Toroidal field = flux strongest at equator → biannual modulation

$$\mathbf{B}(\mathbf{r}) = B(r)\frac{\mathrm{d}}{\mathrm{d}\theta}P_k(\cos\theta)\hat{\mathbf{e}}_\phi$$

Ecliptic plane inclined by 7° = 1.5% biannual modulation peaking in December and June

2.

Flux is stronger when we're closer to the Sun → annual modulation from our orbital eccentricity

$$\frac{1}{r_{\oplus}^2(t)} = \frac{1}{(1\text{AU})^2} \left[1 + 2e \cos\left(\frac{2\pi \left(t - t_e\right)}{T}\right) \right]$$

Earth's orbital eccentricity *e*=0.0167 = **7%** annual modulation peaking in January

Annual modulations

Primakoff flux \rightarrow doesn't depend on B-field, so only has the annual modulation **LPlasmon flux** \rightarrow has annual modulation + biannual modulation

Too small to be important for now, but post-discovery, could be a very interesting signal to study if the B-field is toroidal down into the radiative zone

Back to the main topic...

The signal in a helioscope: ingredients

Axion flux

Helioscope

X-ray spectrum

The signal in IAXO: low masses (vacuum mode)

Stronger solar B-field = more events at low energies

For masses above ~1 meV axion-photon decoherence destroys the signal

Run strategy:

We attempted to reproduce projection from IAXO physics potential paper [1904.09155]

1.5 years in vacuum mode

 +

 1.5 years He buffer gas scan

 → reach DFSZ

(Some post-discovery optimisation of gas pressure is possible to target certain stellar radii of flux, however the benefit was very minor)

Additional benefit of new source of flux at low energies Better measurement of the axion mass

More flux at lower energies → extends mass sensitivity down to meV axions

See Dafni, O'Hare *et al*. [1811.09290] For details of this type of analysis

How well can IAXO measure the Sun's magnetic field?

Range of axion mass and couplings where the magnetic field can be excluded from 0 at 95% CL within the 3 (or 6) year exposure of IAXO

How well can IAXO measure the Sun's magnetic field?

Post-discovery (95% CL exclusion) 10^{-9} Upper layers: B < 0.4 MG 10^{-10} - $|\mathcal{G}a\gamma|$ [GeV⁻¹] Radiative zone $2 < \frac{B}{MG} < 30$ IAXO IAXO+

 10^{-2}

 10^{-1}

 10^{0}

 10^{-3}

 m_a [eV]

 10^{-12}

 10^{-6}

 10^{-5}

 10^{-4}

Range of axion mass and couplings where the LPlasmon flux can be excluded from O at 95% CL for a 6 year exposure at optimised pressure setting

Ultimate sensitivity (summary)

Probing larger radii requires better energy resolution

- Energy resolution better than 0.2 keV \rightarrow IAXO will have better sensitivity to core's magnetic field than neutrinos
- Energy resolution better than 20 eV \rightarrow Saturate uncertainty on Saclay solar model
- Energy resolution better than 10 eV \rightarrow Probe tachocline with IAXO+
- Upper layers probably out of reach for IAXO and IAXO+

• Can we measure the Sun's magnetic field using solar axions?

• Yes: with a new flux of axions from resonant longitudinal plasmon conversion

Summary

- •New source of axions from the sun: resonant conversion of longitudinal plasmons
- •Spectrum of new flux maps the Sun's magnetic field
- •With X-ray detector energy resolution <0.2 keV this flux is measurable, and even dominates at low energies
- IAXO could use this flux to constrain the Sun's magnetic field → Particularly novel for the B-field in the inner parts, exactly where other measures fail.

 \rightarrow arxiv.org/abs/2005.00078 for calculation of flux

For more $\rightarrow \frac{\frac{1}{2006.10415}}{\frac{1}{2006.10415}}$ for IAXO sensitivity $\rightarrow \underline{GitHub.com/cajohare/solax}$ to see the code for both

Extra slides

Other physics with helioscopes beyond axions

Axions as a probe of solar metals

Joerg Jaeckel^a and Lennert J. Thormaehlen^b Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg, Germany

[1908.10878]

Supernova-scope for the Direct Search of Supernova Axions

Shao-Feng Ge^{a,b,c}, Koichi Hamaguchi^{d,e}, Koichi Ichimura^{f,e} Koji Ishidoshiro^f, Yoshiki Kanazawa^d, Yasuhiro Kishimoto^{f,e}, Natsumi Nagata^d, Jiaming Zheng^{a,b}

^a Tsung-Dao Lee Institute, Shanghai 200240, Shanghai Jiao Tong University, China ^bSchool of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China

[2008.03924]

Measure solar abundances

Detect galactic SN

Note: Take care with the Primakoff flux

- At low energies Primakoff flux suppressed by non-zero plasma freq.
- This is <u>not</u> accounted for in the usual empirical formula
- \rightarrow when looking at the LPlasmon flux, use full Primakoff calculation
- See paper by Jaeckel *et al*. <u>hep-ph/0610203</u> (or ours 2005.00078)

Note: Take care with the Primakoff flux

Saclay model

1 meV axion

10 meV axion

