

Searching for axions as dark matter Ciaran O'Hare U. Sydney

ACAMAR meeting on Astroparticle physics, 23rd June 2022

$$\mathcal{L} = \dots - \frac{g_{a\gamma}}{4} a F_{\mu\nu} \widetilde{F}^{\mu\nu} + \partial_{\mu} a \sum_{\psi} \frac{g_{a\psi}}{2m_{\psi}} \left(\bar{\psi} \gamma^{\mu} \gamma^{5} \psi \right)$$

Axions

An **axion** is an extremely light and feebly-coupled boson that can interact with the SM in the following ways...

Why should we believe such a particle exists?

$$\mathcal{L} = \dots - \frac{g_{a\gamma}}{4} a F_{\mu\nu} \widetilde{F}^{\mu\nu} + \partial_{\mu} a \sum_{\psi} \frac{g_{a\psi}}{2m_{\psi}} \left(\overline{\psi} \gamma^{\mu} \gamma^{5} \psi \right)$$

 \checkmark Solves the Strong CP problem \rightarrow "QCD axion" Can be 100% of cosmological dark matter Appears generically in string theory constructions

Axions

An **axion** is an extremely light and feebly-coupled boson that can interact with the SM in the following ways...

- Why should we believe such a particle exists?

Lots of attempts, but so far no axions have been found...

For more, see <u>cajohare.github.io/AxionLimits/</u> \rightarrow Now lists results from >200 publications!

Coupling to the photon \rightarrow axions convert into photons in the presence of magnetic field

Search over parameter space: $(m_a, g_{a\gamma})$

$$\begin{array}{c} 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-13} \\ 10^{-14} \\ 10^{-15} \\ 10^{-16} \\ 10^{-17} \\ 10^{-18} \\ 10^{-19} \\ 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} \end{array}$$

$$\begin{array}{c} 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-14} \\ 10^{-15} \\ 10^{-16} \\ 10^{-17} \\ 10^{-18} \\ 10^{-19} \\ 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} \end{array}$$

$$\begin{array}{c} 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-13} \\ 10^{-14} \\ 10^{-15} \\ 10^{-16} \\ 10^{-17} \\ 10^{-18} \\ 10^{-19} \\ \end{array}$$

<u>cajohare.github.io/AxionLimits/</u>

$$\begin{array}{c} 10^{-6} \\ 10^{-7} \\ 10^{-8} \\ 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ 10^{-12} \\ 10^{-13} \\ 10^{-13} \\ 10^{-14} \\ 10^{-15} \\ 10^{-16} \\ 10^{-17} \\ 10^{-18} \\ 10^{-19} \\ 10^{-11} 10^{-10} 10^{-9} 10^{-8} 10^{-7} 10^{-6} 10^{-1} \end{array}$$

Radio line searches for dark matter axions converting in **neutron star** magnetospheres (see later talks)

cajohare.github.io/AxionLimits/

However without any prior on the axion's mass, the chances of them bumping into it in such a vast parameter space seem very low.

The experiment or observation that will one day detect the axion may have been proposed.

- Is there anything we can do to light the way?
- Yes, if we impose that the axion makes up dark matter

Axion dark matter: the misalignment mechanism

Axion dark matter: the misalignment mechanism

Axion dark matter: the misalignment mechanism

Axion is the phase of a complex scalar field governed by a tilted potential.

Axion field rolls down to minimum and starts damped oscillations \rightarrow cold dark matter with predictable abundance: $\Omega_a h^2 \propto \theta_i^2$

But there's a complication: what about $\nabla \theta$?

$\Rightarrow \underline{\text{Cosmic strings}} \text{ from}$ axion field winding around 2π (

Different causal patches take on different initial angles → Field gradients!

$$\longleftarrow \ddot{\theta} + 3H\dot{\theta} \left[-\frac{1}{R^2} \nabla^2 \theta \right] + m_a^2 \theta =$$

$\Rightarrow \underline{\text{Domain walls}}$ between true / false vacuum (0 and π)

Numerical simulations of the cosmological axion

Solve the evolution of the axion field...

...on an expanding lattice...

What do we want to do?

... and find the parameters that reproduce $\Omega h^2 = 0.12$

...to measure the relic abundance of axions...

 $\phi(\mathbf{x}) \sim |\phi(\mathbf{x})| e^{i\theta(\mathbf{x})}$

The axion potential

$$\frac{\phi}{\delta} \left(|\phi|^2 - f_a^2 \right)^2 + \chi(T) (1 - \cos \arg \phi)$$
Wine bottle part
$$\int_{\text{Governs}}^{\text{Governs}} \int_{\text{Governs}}^{\text{Governs}} \theta(\mathbf{x}) = a(\mathbf{x})/f_a$$
adial dof: "saxion"
Sets string width
$$\int_{\text{Coverns}}^{\text{Governs}} \theta(\mathbf{x}) = a(\mathbf{x})/f_a$$
(this mode is the dark matter)

(movie)

Evolution of the axion field in the post-inflationary scenario

String network scaling

Evolution of the axion field in the post-inflationary scenario

String network scaling

Domain walls attached to strings \rightarrow network collapses

Evolution of the axion field in the post-inflationary scenario

String network scaling

Domain walls attached to strings \rightarrow network collapses

Inhomogeneous distribution of axions free streams until non-

> Seeds of structure gravitationally collapse

CAJO+[2112.05117]

Now simply take the density of axions at the end of the simulation and figure out the density today:

 $\rho_a(T_0) = m_a n_a(T) \frac{g_{*s}(T_0)}{g_{*s}(T)} \left(\frac{T_0}{T}\right)$

From this can find which axion parameters reproduce $\Omega_a h^2 = 0.12$

i.e. which axions give the correct relic abundance?

Large numbers of high-density oscillating lumps are seeded towards the end of the simulation

- Axions are the best candidates for dark matter
- One could be found tomorrow, or in 20 years time. Theoretical progress is desperately needed for the experimental community to know what experiments to run
- Simulations are beginning to firm up predictions for the axion's properties that make it consistent with 100% of the Dark Matter
- However, we need further simulations including N-body simulations to study the beyond-CDM clumping of axions in our galaxy and determine any further astrophysical signatures

THE UNIVERSITY OF

SYDNF

Summary

