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The solution, a la Peccei-Quinn
QCD vacuum energy already minimised at 8 = 0 (Vafa-Witten theorem).

However 0 is just a parameter, there is no mechanism to cause it to want to
minimise energy

E(0)

4
AQCD

-2

Y



The solution, a la Peccei-Quinn
QCD vacuum energy already minimised at 8 = 0 (Vafa-Witten theorem).

However 0 is just a parameter, there is no mechanism to cause it to want to
minimise energy
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PQ mechanism: what if there was?
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The axion

-2

e |Introduce Goldstone boson, a, that couples to gluons « (a/f,) GG. It will have an
(approximate) shift symmetry that can be used to cancel off any unwanted CP vio

VW theorem ensures (a) = 0
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The axion effective theory

Introduce axion as the pseudo-Goldstone boson of a new global U(1) ,
spontaneously broken at scale f,. May also couple to the photon and fermions

B 1 1 2 2 Ya~ T ap (7 D
L = 5 (0,a) (0" a) 5 Mal i ak,, F" —|—8MCLZ om, (VyH )

Importantly, all couplings suppressed by g ~ 1. So set symmetry
breaking scale as high as you like to evade observational constraints
— ideal candidate for dark matter
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Axion-photon coupling [GeV ]
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Axion-photon coupling [GeV ]
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How can a scalar field be the dark matter?
— the misalignment mechanism



Misalignment mechanism
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Misalignment mechanism
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Misalignment mechanism

Time
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Misalignment mechanism
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Misalignment mechanism for a generic scalar

Consider energy density in the scalar field

103k Dark energy-like Matter
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Misalignment mechanism for a generic scalar

Consider energy density in the scalar field

Redshifts like dark matter, with

abundance today:

2 2 1 / 2 : Dark energy-like Matter
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Axion misalignment

Axion is the Goldstone (6) appearing after the U(1)p(, is broken at scale f.

We write it as the phase of a complex scalar field: <I>(t) = p et

V(@) = Veq(p) + Voop(6) V(@)
A Y — cont -
Re(P)

Im(P)



Axion misalignment

Axion is the Goldstone (6) appearing after the U(1)p(, is broken at scale f.

We write it as the phase of a complex scalar field: <I>(t) = p et

V(@) = Veq(p) + Voop(6) V(@)
— %(pz — ff)z m2(T) f2(1 — cos 0) 7
QCD

Im(P)



The QCD axion

Mass is generated by instantons whose effects are temperature-dependent

In the literature this dependence is called the “topological susceptibility”, y(T')

V(8) =~ x(T)(1 — cos0) = m2(T)f(1 — cos6)

a

Axion mass grows as temperature drops,
reaching a constant when T' < Tyqp

V(6)

—37T —27T — 7T 0 7T 27T 37T
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The QCD axion

Mass is generated by instantons whose effects are temperature-dependent

In the literature this dependence is called the “topological susceptibility”, y(T')

V(8) =~ x(T)(1 — cos0) = m2(T)f(1 — cos6)

a

Axion mass grows as temperature drops,
reaching a constant when T' < Tyqp

< Ty V(0)
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The QCD axion

Mass is generated by instantons whose effects are temperature-dependent

In the literature this dependence is called the “topological susceptibility”, y(T')

~ a2 2
V(e) ~ X(T)(]‘ — COS 0) — m, (T) fa (]‘ — COS 0) Lattice QCD calculation, Borsanyi+ [1606.07494]
10° - - . .
_ 10

Axion mass grows as temperature drops, 10° 1
reaching a constant when T' < Tyqp 102 F
= 10_4 E
V(6 £ |
T < TQCD ( ) = 10-6 L
10° |
1070 |

A A 012 L - - - -

v 100 200 500 1000 2000

—37T — 27T —7T 0 T 27T 37T



The QCD axion mass QCD topological susceptibility:

The tilt comes on gradually as
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The QCD axion mass QCD topological susceptibility:

The tilt comes on gradually as

7T I IR I IR I T TTT] h d
) H(t) > m, the temperature drops
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QCD axion abundance

® Generic scalar misalignment:

Quh?® o ¢sz1/2

® For QCD axion we get:

Q.h% ~ 0.12 67

Mg

where n ~ 8 (from Lattice QCD, e.g. 1606.07494)
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QCD axion abundance

® Generic scalar misalignment:

Quh?® o gb?ml/z

® For QCD axion we get:
7.26 ueV

Mg

n+4

Q.h% ~ 0.12 67
where n ~ 8 (from Lattice QCD, e.g. 1606.07494)

® | eads to “classic QCD axion
window”: O(1—10) ueV

— but what should we pick for 6. ?
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The issue is that Tp, > T cp

The Universe should be filled with

random 6, everywhere since the axion
was massless when it was born at PQ
phase transition, i.e. it didn’t know
about the preferred angle

PQ
T




When did inflation happen?



When did inflation happen?

Option 1:
PQ is broken before and during inflation




When did inflation happen?

Option 1: Option 2:
PQ is broken before and during inflation PQ is broken after inflation

After PQ breaking

PQ unbroken — axion

PQ broken — axion exists doesn’t exist yet
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When did inflation happen?

Option 1: Option 2:
PQ is broken before and during inflation PQ is broken after inflation

After PQ breaking

PQ unbroken — axion

PQ broken — axion exists doesn’t exist yet

9 ;»':T_ v,__‘-.-
0; = rand
o .
2 Const. i = ranaom
g

* i ¢ 4

Pre-inflationary scenario Post-inflationary scenario



When did inflation happen?

Option 2:
PQ is broken after inflation

After PQ breaking

PQ unbroken — axion
doesn’t exist yet

0; 1 random

" Y

o >

F b
s o

Post-inflationary scenario



Post-inflationary scenario

Inflation has already happened before

axion was born

— Universe filled with many values of 6.
— Different value in every causal patch




Post-inflationary scenario

Inflation has already happened before

axion was born

— Universe filled with many values of 6.
— Different value in every causal patch

— Patches come into contact as horizon grows.




Post-inflationary scenario

® \We have an ensemble of every possible

0. sampled across our Universe.
® Stochastic average:

62) (jg) ~ (181)

Peccei-Quinn scale, f, [GeV]
10 10 107 10 10 10* 10% 104 10" 10" 10° 10° 107 10°

10~ 10712 1011 10719 10° 107°% 107 107 10 10~* 10> 102 10! 10 10t
QCD axion mass, m, [eV]



Post-inflationary scenario

® \We have an ensemble of every possible

0. sampled across our Universe.
® Stochastic average:

62) (;’5) ~ (181)

Peccei-Quinn scale, f, [GeV]
10 10 107 10 10 10* 10% 104 10" 10" 10° 10° 107 10°

In the post-inflationary scenario only one mass
is consistent with observed DM abundance

(Up to theoretical uncertainties)

Overabundant «——— — Underabundant

10~ 10712 1011 10719 10° 107°% 107 107 10 10~* 10> 102 10! 10 10t
QCD axion mass, m, [eV]



Peccei-Quinn scale, f, [GeV]
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But there’s a complication




But there's a complication: V@

Different patches meet up
— Field gradients!
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= Cosmic strings
from axion field

winding around 2x




But there's a complication: V@

Different patches meet up
— Field gradients!

— 4+ 3HO- — V04 m

. Stri Wall Stri
= Domain walls SR 9

= Cosmic strings

from axion field between true/false

winding around 27z vacuum (0 and 7)




Brute force solution: simulate

—_
74 N
% S
...on an ...to measure the ...and predict its
Evolve the , ,
e expanding relic abundance present day
axion field... , , .
attice... of axions... distribution

For more comprehensive accounts see, e.g.: Gorghetto+[2007.04990], Buschmann+ [2108.05368], Vaquero+ [1809.09241], O'Hare+ [2112.05117]



Evolution of the axion
field in the post-
inflationary scenario

Projection through 3D co-moving
box, coloured by integrated axion
energy density:

= —q S Va

+x (1 —cosa/f,




Evolution of the axion
field in the post-
inflationary scenario

Projection through 3D co-moving
box, coloured by integrated axion
energy density:

= —q S Va

+x (1 —cosa/f,




Evolution of the axion field
in the post-inflationary scenario

PQ String network scaling

Domain walls attached to strings
V(0) — network collapses

Inhomogeneous distribution of

axions free streams until non-
relativistic

Seeds of structure
gravitationally collapse
into miniclusters and halos




What is the ultimate distribution of axions in galaxies?

Will it be like vanilla ACDM halos?



What is the ultimate distribution of axions in galaxies?

Will it be like vanilla ACDM halos?

Pre-inflationary axion: probably, yes.



What is the ultimate distribution of axions in galaxies?

Will it be like vanilla ACDM halos?

Pre-inflationary axion: probably, yes.

Post-inflationary axion: NO



Gravitational collapse

Axion distribution is highly inhomogeneous. Large density fluctuations from
QCD-horizon scale dynamics that can collapse prior to matter-radiation
equality = we need to keep simulating!

., R

z = 10°

Initial conditions from WKB evolve + Schrodinger-Poisson system for

| N-body methods for non-linear gravitational collapse
lattice simulation linear growth



Eggemeier, CAJO+ [2212.00560]

After focp axion tield torms

quasi-stable solitons that lay
down small-scale perturbations

These eventually seed AU—mpc
gravitationally bound clumps of
axions with masses

M e [107°,107°] M

— axion miniclusters




Eggemeier, CAJO+ [2212.00560]

After focp axion tield torms

quasi-stable solitons that lay
down small-scale perturbations

These eventually seed AU—mpc
gravitationally bound clumps of
axions with masses

M e [107°,107°] M

— axion miniclusters
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Dimensionless power spectrum, A% (k)

Axion miniclusters

Halo mass [ M]
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Eggemeier, CAJO+ [2212.00560]

Miniclusters

Minivoids

Miniclusters contain >80% of the
axions but make up <1% of the
volume

Earth travels through galaxy at about
0.2 mpc per year, so experiments are
much more likely to sample the
minivoids than the miniclusters



Typical “worst case scenario” density
would be inside the minivoids
~10% of large-scale average density

Minivoids are mostly stable by final
simulation time (z~100)
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Eggemeier, CAJO+ [2212.00560]



Why is the dark matter density a problem?

Frequency [MHz]

10°

Neutron Stars

4

10%

Globular
clusters

Haloscope sensitivity scales slowly.

1
\V pDMgay X

/T

Usually assume ppy = 0.45 GeV/em3

inspired by from inferences using Milky Way

stars on >100 pc scales

arge-scale average then this is equ
to a haloscope thinking they’ve exc

f true (local) value was only ~10% of
ivalent

uded

DFSZ when they've only excluded KSVZ



Is this the end of the story?



Not the end of the story...

Miniclusters are susceptible to
tidal disruption by stars

2G M, )2 M R2,

AE:(
3

T

Energy injected into minicluster

bvrel

Axions with E>Binding energy will
evaporate away — form tidal stream

See e.g., Tinyakov+ [1512.02884],
Kavanagh+ [2011.05377]
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Monte-Carlo miniclusters orbiting
the galaxy, undergoing stellar
encounters that gradually strip
mass away from them
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Orbit ending at
Solar position

today
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20

Monte-Carlo miniclusters orbiting
the galaxy, undergoing stellar
encounters that gradually strip
mass away from them
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Monte-Carlo miniclusters orbiting
- the galaxy, undergoing stellar
encounters that gradually strip

mass away from them
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Monte-Carlo miniclusters orbiting
the galaxy, undergoing stellar
encounters that gradually strip
mass away from them




~_{ Monte-Carlo miniclusters orbiting
the galaxy, undergoing stellar
encounters that gradually strip
mass away from them
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Tidal stream formation

M; = 107" My °
My/M; = 97%
—0.6 —0.4 —0.2 0.0 0.2 0.4
£ lpcl

At solar position, most miniclusters are not 100% disrupted.
However, a sizeable amount will form ~pc-long tidal streams



Tidal stream formation

M; =10~ My .
M;:/M; = 97%
7/ ° lAfter 13 Gyr
Ry ~ Riype e ——
Kstr i Umct
—0.6 —04 —0.2 0.2 0.4

¢ [pc]

At solar position, most miniclusters are not 100% disrupted.
However, a sizeable amount will form ~pc-long tidal streams
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Different populations of miniclusters

—1000

—500 0

x [AU/h]

500

1000

Isolated
— About 70% of MCs by

number

— Masses M € [1071°, 10714 M

— Form from prompt col

apse

— Power law density pro

iles p ~ r1

— ~0% are fully disrupted

Merged

— About 30% ot MCs by

number

— Masses M € [10712, 1077] M,
— Form from mergers of MCs

— NFW density profile

— 45% are fully disrupted



Min
inicluster mass function
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Tidally stripped MCs refill the phase space

We measure ppy; on scales ~100 pc

— Must be ~10'* miniclusters in that volume
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Tidally stripped MCs refill the phase space

We measure ppy; on scales ~100 pc ~

— Must be ~10'* miniclusters in that volume /

After disruption, MCs turn into extendead
~pc-long streams. Volume filled with \

axions is enhanced by a factor of ~10*




Tidally stripped MCs refill the phase space

We measure ppy; on scales ~100 pc ~

— Must be ~10'* miniclusters in that volume /

After disruption, MCs turn into extendead
~pc-long streams. Volume filled with \

axions is enhanced by a factor of ~10*

Q: How many streams overlap at a given
position in the box?

Q: How much is the density enhanced
due to the re-filling of phase space



Axion streams at the
Solar position

Answer: typically there are
O(100-1000) tidal streams overlapping
a given position. Vast majority do not
contribute substantially to the density

Together they add up to ~70-90% of
large-scale measured value ot ppy
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Uncertainties

We tind very little dependence on the
details of the mass function or the orbit
models, which can be supported up

with a back-of-the-envelope calculation.

The only things that matter are:

— That the most massive miniclusters
are described by smooth NFW halos. If
they are “clusters of miniclusters” they
are probably more resiliant.

— The NFW concentration parameter

(or Mass-radius relation), which affects
the variance in our answer.

50 60

Stream heating

— Ostr = Omc

EE. astr — 10 X amc

3
s (10‘{\6IM@)
Rl() = 10.2 mpc

|

90

70 80 100
Z4Pstr/ ODM [%]

110 120



Signal S(w) « discrete FT of timestream

HaIQSCQpe Sig nal Frequency resolution = Aw ~ Ti;tl

1.2 I ! I I I I
' 2
Tint = 10° x £&

The power spectrum of the oscillating
axion signal in a haloscope have a
distinct Maxwellian lineshape.

1.0 - Standard lineshape -
i (Maxwellian)

Frequency resolution depends on the
duration of the timestream samples
that are put through a discrete Fourier
transtform in order to calculate that
power spectrum

S(w) o %giﬁ,f(w)
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Haloscope signal

Disrupted minicluster streams are

extremely cold (6 < 1 km/s) and do not
contribute a significant density
enhancement. However they become
extremely prominent if lineshape is
sufficiently well-resolved (long
integration times)

Signal S(w) « discrete FT of timestream

: B 1
Frequency resolution = Aw ~ T

Pre-inflationary lineshape
~  (Smooth Maxwellian)

Post-inflationary lineshape
(void + streams)




Haloscope signal

Disrupted minicluster streams are

extremely cold (6 < 1 km/s) and do not
contribute a significant density
enhancement. However they become
extremely prominent if lineshape is
sufficiently well-resolved (long
integration times)

Some important observations:

 Streams only enhance the signal by py./pyoiq ~ 7.
but can enhance it by many orders of magnitude
more in the resolved lineshape in certain bins

* Many streams are narrower than daily modulation
in lab motion v ~ 0.47 km/s

 Streams persist in lineshape O(days-years) at a time

Signal S(w) « discrete FT of timestream

Frequency resolution = Aw ~ T

Pre-inflationary lineshape
~  (Smooth Maxwellian)

Post-inflationary lineshape
(void + streams)




Summary

* Miniclusters, voids and streams are a consequence of the post-inflationary axion dark
matter scenario so cannot be ignored

* [gnoring tidal disruption, the worst-case scenario is that we are in a minivoid which
have only about ~10% of pp); (suppression in g,, by a factor of 3)

e Accounting for tidal disruption, phase space at Solar position re-filled by a factor of 6,
to about 70% of pp), (suppression in g, by a factor of 1.2)

e (O(1000) ultra-cold tidal streams present in axion lineshape at any one time that persist

for O(days—years) at a time

ARC CENTRE OF EXCELLENCE FOR

JTER

THE UNIVERSITY OF

SYDNEY




